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SYMBOLS

Eg blowing parameter defined by equation (19)

Cfj heat transfer coefficient

C-Q specific heat

H total enthalpy

H convection coefficient parameter

h volumetric convective heat transfer coefficient

IQ external incident radiation intensity

Ip radiation intensity outward in the matrix

Irp radiation intensity transmitted inward in the matrix

K absorption coefficient

k thermal conductivity

L thickness of the matrix

M molecular weight

m,m’ index on radiation bands that penetrate the matrix

m mass injection rate

n,n’ index on radiation bands absorbed on the exposed surface

p pressure

~p normalized pressure

q heat transfer rate

R universal gas constant

S scattering coefficient

T temperature

t time

U velocity in x direction

x distance from front surface

iii



a viscous coefficient

g inertial coefficient

e emissivity

E relative error

n reflectivity

n cooling effectiveness defined in equation (42)

6 normalized temperature

U viscosity

S normalized spatial coordinate

p density

o Stefan-Boltzmann constant

(j) porosity

^ convective heat transfer correction factor by mass injection (see
con

eq. (17))

ip radiative heat transfer correction factor by mass injection (see
eq. (20))

Subscripts:

b back face

oond conductive

e external

e edge of boundary layer

f fluid

i internal

o without injection

P radiative

radin incident radiative

revad reradiative

iv



s solid

y wall

free stream

v the vth spectral band of radiation

Superscripts:

( ) differentiation with respect to E,

"",

v
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A SIMPLIFIED ANALYTICAL SOLUTION FOR THERMAL RESPONSE OF A

ONE-DIMENSIONAL, STEADY-STATE TRANSPIRATION COOLING

SYSTEM IN RADIATIVE AND CONVECTIVE ENVIRONMENT

Hirotoshi Kubota*

Ames Research Center

SUMMARY

A simplified analytical method for calculation of thermal response within

a transpiration-cooled porous heat shield material in an intense radiative-

convective heating environment is presented. The essential assumptions of the

radiative and convective transfer processes in the heat shield matrix are the

"two-temperature" approximation and the specified radiative-convective heat-

ings of the front surface. Sample calculations for porous silica with CO^
inj ection are presented for some typical parameters of mass injection rate,

porosity, and material thickness The effect of these parameters on the

cooling system is discussed.

INTRODUCTION

Probes entering the atmospheres of large planets, such as Jupiter and

Saturn, encounter severe radiative heat loads in addition to the usual convec-

tive heat loads. The ablating heat shields, both charring and subliming types,
used in the past to protect probes from convective heating, may not be ade-

quate for these additional heat loads For such entries, ablators will have

to be chosen to withstand both the radiative and the convective heating.

One method, which is now being developed to withstand the radiative and

convective heat load, uses reflecting ablation heat shields [refs 1-3) It

should be noted, however, that certain ablators, for example, silica, which

are effective in protecting against convective heat may not block radiative

heat and may, in fact, increase the incident radiative heating at certain

ablation rates (ref. 4)

Another method which can be easily adapted to withstand the radiative and

convective heat loads is a transpiration cooling technique. By choosing a

porous heat shield which has a high reflectivity, part of the radiative heat

load can be reflected. By choosing an absorbing transpiration gas ^ref. 5)
part of the radiative heat load can be absorbed and the convective heat load
can be blocked.

*National Research Council Associate at NASA Ames Research Center,
Moffett Field, California, 94035, during the author’s official leave from

National Aerospace Laboratory of Japan.
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Accurate predictions of heat and mass transfer in the porous media must

be solved from the coupling of momentum and energy equations for fluid and

energy equation for a solid matrix (ref. 6) Since the convective heat

exchange between solid and fluid affects the temperature distributions of solid

and fluid in the porous matrix, two basic techniques have been introduced. One
is the "one-temperature" assumption, that solid and fluid temperatures are the
same, for a large heat transfer or small mass transfer rate, such as is the
case in charring ablation (refs. 7 and 8) the other is the "two-temperature"
assumption, that solid and fluid temperatures are not the same, an assumption
that is essential for a small heat transfer and a large mass transfer rate

(ref. 9)

In this investigation, the transpiration cooling system is studied
theoretically with the intent of finding simple analytical solutions. This

involves the interactions of the heat and mass transfer process within the

porous heat shield. For this purpose, a simplified, one-dimensional, steady-
state case with constant properties will be investigated. It is expected that,
from this simplified model, the essential features and the basic parameters
that govern the transpiration cooling system can be found.

ANALYSIS

Physical Model and Assumptions

The physical model considered in this analysis is sketched in figure 1

A one-dimensional porous matrix of thickness L is exposed to the external con-

vective and radiative heat fluxes. The present analysis considers the heat

transfer process only within the porous matrix under the conditions of given
convective and radiative heating at the front surface. The coolant gas is

injected through the matrix from back to front surfaces.

The analysis makes the following major assumptions

1 Steady-state transpiration

2. Solid and gas temperatures in the matrix not equal (two-temperature
assumption)

3. Continuum model for the porous matrix (volume element is large with

respect to individual pores)

4. No reversal flow (all injected gases flow toward the heated front

surface)

5. Specified incident heating fluxes and constant back-face temperature

6. Constant thermal and optical properties (independent of temperature,

pressure, and wavelength)
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7. Neither chemical reactions between the porous matrix and the injected
gas nor dissociation of the injected gas

8. Negligibly small energy change due to the pressure difference in the
porous matrix in comparison with other energy terms

9. Front surface impermeable to the external gas

Simplified Governing Equations

The complete transient differential equations, describing the conserva-
tions of mass, momentum, and energy without radiation in the porous matrix and
with mass transfer, are presented in reference 10. By adding a radiative
transfer term to the energy equation, the differential equations can be
applied to the case with radiation. This radiative transfer term will be
derived in the next section. The complete equations will not be presented
here. The simplified equations, obtained by applying the previous assumptions,
are as follows.

For fluid:

Mass conservation

^ ("

Momentum conservation Darcy’ s equation

dpf

^ ~w^f + ^f^f ^ C2)

Energy conservation

d^T dT
^

dq

^ -^- + ^f -df ^ ^ V -^ W

Perfect gas law

Pf ^ ^ ^ C4)

For solid:

Energy conservation

d^l\ h ^P
^ -^/ Y-J ^ T^ ^T 0 C5)

where a, g, and if) are constants that depend on the porosity, and h is a

volumetric heat transfer coefficient between solid and fluid and can be
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written by the experimental correlation (ref. 11) as

h 0. 00434CCp ^) o 333u .o 227mo 56 (a/B) l 44 (6)

From equation (1) ""s obtains

m -fi-fU-c constant (7)

that represents a given coolant injection rate at the back face. From equa-
tions (2) (4) and (7) one also obtains ^

dpf
Pf -^-L Cctpj- + ^mdR/M^T W

Then, equations (3) (5) and (8) become a set of the governing equations.

Radiative transfer term, dq^/dx.- The matrix material is partially trans-

parent to radiation so that a part of the incident radiative flux penetrates

the material to be backscattered in depth and the rest is absorbed at the sur-

face [see fig. 2) The incident radiation is defined (ref. 2) as

m’ n’

^ Z ^ + E ^ w
e

v=rn v \)=n v

where the first sum is radiation that penetrates and the last is surface

absorbed radiation.

Thus, the radiative flux within the matrix q^ should be evaluated under

the influence of the penetrating incident radiative flux ^ qp^ ; hence, by
\)=m

v

the "two-flux" method described in appendix A, it is written as

m’ m’

^ E ^ Z ^ W (10)
\>=m v \>=m

The radiative terms in equations (3) and (5) are then expressed, from the

solution of the Kubelka-Munk equations (Al) and (A2) by

da rn1 /dirp dip \ m’d^ y ^ (_^ -_^ ) y* ^K{IT + IR ) (ID
A’ ^ ’ \ A- A- / kra v v

/A \ m’ -p, \ rn1

-2 (^) e"X S ^
< 2 (^ e-":\ ^
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Boundary cond-vt-ions. Boundary conditions required for the simplified
governing equations are (see fig. 3)

/-7/71

at x 0; -kg -^- q^ + qyadin ^rerad (13)

d^T dT

^ -^ or -^ -d!r w

Pj- Pj" (15)

at x L; Tg T^-= T^ (16)

where the convective heating rate with blowing (ref. 12) the incident radia-
tive heating flux with’blowing1 and the surface reradiation heat flux are
defined as

^ Pe^H^^e ^ ^^n (17)

~Bo
^con g---- C18)

e30 1

Bo C19)0 PeuecH^
n’

^vadin Z Cl ^g)^ ^^d (20)
\)=n ^

? ,7 ^ C21)
’rerad "y

In equations (17) and (20) ^^ and ^ip^d are the correction factors for

incident convective and radiative fluxes by mass injection, respectively.

Nondimensional Governing Equations and Boundary Conditions

The simplified equations (3) (5) and (8) can be written in the

nondimensional forms as follows:

9^ + ^ (Qg 9 .) + ^ e"^ + $5 e’^ 0 (22)

-Private communication with J. T. Howe.
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e" + $2^ + ^ COg Qf’) + ^G ^ + $7 e""^ o (23)

py.py $89^ ^9 0 C24)

where

Ts ^
r

s- ^i (25) ,
Tf T^

e = -L--- (26)
’ TSu ^

pf

^ pf C27)

-’u

S i (28)

$1 -hL2/^^ ^
$2 mCp L/k^
$3 bL^/k^

m’
$4 2^2 (Ao/Al) ^ ^ /^C^ T^

\i=m v/

$5 (Ai5o/AoBi)^4 C29)

$6 (^/^)$4

$7 (^/^) CAi5o/^o5l)^4

/ 2
Og Lm^R/M^ ^Tg T^ {a\i_r. + ^m} p

$9 W/C^ T’fo)

) differentiation with respect to S
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The corresponding boundary conditions (eqs. (13) through (16)) are

at S 0; 6g(0) 1 (30)

QS (0) $lo C<?y + <?^zn ^era6) C31)

where

$10 -L/k^T^ T^-) (32)

9^"(0) 0 (33)

or Q^ (0) 0 (34)

P^W 1 (35)

at ^ 1; 6g (l) 0 (36)

9/1) 0 C37)

In equation (31) q ^pad-in’ and ^re-pad are Unctions of only the surface
temperature, Tg

Method of Solution

General solutions of equations (22) and (23) can be written as

QS CS) f Z ^ ^ - ^} + E! eaL^ + ^2 ^-aLS (38)
\k=l

QfW ( Z Y^ e^ + y^) + ^3 ^ + ^ e-^^ (39)
\k-1 /

ivhere the bracketed terms are the homogeneous solutions and the other terms
are the particular solutions.

Coefficient 6^ in equations (38) and (39) is obtained from the homogene-
ous solutions of equations (22) and (23) as discussed in appendix B. The
other coefficients are obtained from the boundary conditions, equations (30)
through (37) Note that all coefficients except 6^ are implicit functions of
Tg The 7’s value is determined by iteration to satisfy the energy balance
given hy equation (31) and equation (38) for E, 0, that is,

3

QS’ CO) S o^-k + ElaL E2aL (40)
k=\
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The pressure variable p is solved from equation (24) by integrating
6j?(^) as follows:

p^ CO 2$g[ l: CY^/^)^ l) + (.E^a.L-}^ l)
u;=i

CVaL) (e-"^ l) + 2(Y^$8 + $g)S + 1 (41)

>>
Sample Calculations

The effect of radiation penetration into the porous matrix has been

tested for two boundary conditions, corresponding to (1) "o conduction heat of

the fluid at the front surface and (2) zero derivative of the fluid conduction

heat at the front surface. The following table shows four typical sample
calculations considered in this analysis.

Case Radiative penetration Boundary condition

I-A Without 9^" CO) 0

I-B Without Oj-’ (0) 0

II-A With Qf W 0

II-B With e^-’ CO) 0

In this sample calculation, silica CSi02) and carbon dioxide CCOz) are

taken as porous matrix and transpirant gas, respectively. Detailed descrip-
tion of their thermal and optical properties are shown in appendix C.

The radiative and convective heat loads for this sample calculation are

taken for a 15 Saturn entry (ref. 3) at t 23. 7 sec, corresponding to maxi-

mum radiative heat loads.

q^ 216. 70 cal/sec/cm2
o

p 2. 091 atm
Q

U^ 2. 86xl06 cm/sec

p U Cff l lSGxIO"2 gm/cn^/sec

H,, 0.9685xl05 cal/gm
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The spectral radiative heating data for SiO^ blowing can be broken into
20 groups whose wavelength ranges cover 0.0919 u through 9.92 y. (The exact
incident heating for CO^ injection may be also estimated by the use of some
numerical computations such as RASLE CODE (ref. 4) .) The incident radiations
are combined into groups 1-3 (a part of infrared) and 17-20 (ultraviolet) that
are absorbed at the surface of the silica; groups 4-16 penetrate into the
matrix. 1

RESULTS AND DISCUSSIONS

Typical sample solutions are presented for a mass injection rate of
m 0. 1 gin/cm2/sec, ^yad 1-0 and Q f"W 0. The solid and fluid tempera-
ture distributions and the pressure distributions for these sample cases are
shown in figure 4 (a) through figure 4 (d) for the porosity range from <j) 0.2
to (j> 0. 8. As would be expected, temperature distributions Tg and In. are
sufficiently close to each other so that the "one-temperature" approximation
will provide a good solution at the smaller porosity. However, the "two-
temperature" method is required for higher porosity cases.

The effect of radiative transfer within the porous matrix on temperature
and fluid pressure is presented in figure 5(a) for the same input and boundary
condition as before, except for a porosity of (j) 0.4. A significant differ-
ence in temperature between two cases, with and without radiation heat, is
observed.

The effect of boundary condition (case A, 6^" (0) 0; and case B,

0^’ (0) 0) on solid and fluid temperature distribution is shown in figure 5(b)
for the same input conditions as in figure 5(a) except for a larger mass injec-
tion rate of m 0.2 gm/cn^/sec. There is no significant effect of the bound-
ary condition on the solution except in the vicinity of the front surface.
Since the boundary condition, 6f" (0) 0, is a more reasonable assumption
(ref. 10) the remainder of the calculations will be made under this
condition.

Figure 6 presents the cross-plot of wall temperatures and back-face
pressure of fluid as a function of porosity for various radiation heat trans-
fer correction factors ^pad- Variations of the blowing correction factor for
the radiative heating ^pad ^th blowing parameter is given for SiOz and carbon
ablation (ref. 4)

The significant reduction of fluid wall temperature due to the matrix
porosity is noted, as well as larger separation of solid and fluid tempera-
tures as the value of porosity increases.

The variations of solid surface temperature Tg due to mass injection
ii}

rate and porosity, are shown in figure 7(a) Note that Tg is not signifi-

cantly affected by the change of porosity to a higher value (if) ^ 0.4) This
effect can be also recognized partly from figure 6.

Private communication with J. T. Howe.
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The cooling effectiveness is demonstrated in figure 7(b) for the various

porosity and mass injection rate. The cooling effectiveness is defined by

T Ta- T: - ^’A (42)
"u,o D

where Tg Tg Tjy, and BQ are wall temperature with and without mass injection,

back-face temperature, and injection parameter By m/pgUgCff respectively.

The cooling effectiveness n depends strongly on the mass injection rate,

decreasing as the injection rate increases. However, the effect of porosity
on cooling effectiveness, for a given mass injection rate, is not so signifi-
cant; that is, the cooling effectiveness may be expressed in a single average
curve [e.g. <|) 0.4 case) that represents overall correlation between solid

temperature, porosity, and mass injection rate.

The effect of material thickness on wall temperature and back-face heat

conduction is shown in figure 8. The material thickness has an important
effect on reducing back-face heat conduction but it has practically no effect
on solid surface temperature.

The characteristics of the solutions, described above, can be plainly
explained by using the concept of the convection coefficient parameter
(ref. 13) H, defined by

H Jf- C43)

P.f
where h, the heat transfer coefficient, is inversely proportional to the

matrix porosity. The parameter H, .given by equation (43) signifies the

degree of the heat exchange between the solid and fluid’; that is, the larger

the convection coefficient parameter (larger heat transfer coefficient or

smaller porosity; larger matrix thickness or smaller mass injection rate, or

both) the less difference there is between the solid and fluid temperatures

The important criteria for a transpiration cooling system are cross-

plotted in figure 9 with the assumption that the porous silica used for the

present cooling system will melt at 1981 K (ref. 3) Then, the boundary
criteria, in terms of radiation heat transfer correction factor ^p^d and

porosity limiting temperature, can be cross-plotted as in figure 9. In this

figure, the region above each boundary curve requires ablation cooling while
^the other region requires only transpiration cooling. Also shown in the same

figure is the functional curve, the ^y^d vs m relation, obtainable from the

external flow condition (ref. 4)

The cross points between the solid lines and the dashed line represent
the minimum mass injection rate required for maintaining a porous material

below the melting temperature. The higher porosity requires less mass injec-
tion rate for the given material thickness.

10



The thermal properties have important effects on the solutions.
Figure 10 is a composite plot showing the effects of porosity, material thick-
ness, and thermal properties on the front-surface solid and fluid temperatures.
Nondimensionalized temperature differences for the solid and the fluid at the
front surface, due to thermal properties (see appendix C) are defined as

’Zg^Ccase <a>) ’7^(case <b>)

Er^ T^Ccase <a
(44)

^ \Tf (case <a Tf (case <b

^ " ^(case <a>)

respectively.

Note that the thermal properties for case <a> are selected at the melting
temperature of silica, that is, 1981 K. For case <b>, the back-face tempera-
ture of 300 K is chosen. These are two extreme temperatures expected. Since

ey and ey,, are the relative errors in temperature as a result of the

thermal properties, the magnitude of these parameters shows the effect of the
thermal properties. Note again, that the maximum effect is presented because
the two extreme temperatures were taken.

The effect of the thermal properties is quite important on the solid wall

temperature but not too important for the fluid wall temperature. The effect
of porosity is to increase the temperature difference. The thinner material

thickness is also strongly affected.

Finally, the present analytical solution has been compared with a more

rigorous numerical solution (but still with constant thermal and optical prop-
erties) that retains the energy change term due to the pressure difference in
the porous matrix (see assumption 8) The result shows that the present
analysis compares within 1 percent of the rigorous solution, that is, the
Adams-Moulton integral scheme. This result verifies the assumption that the
term U’-p{dp ft’dx) can be neglected except for the case of extremely small

porosity, that is, larger pressure drop within the porous matrix.

CONCLUDING REMARKS

A simplified analytical method for calculation of thermal response within
a transpiration-cooled heat shield material in an intense radiative-convective
heating environment is presented.

Essential features of the analysis are the "two-temperature" assumption,
where matrix and flowing gas have different temperature distributions, and the

specified radiative-convective heatings at the front surface.

11
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Sample calculations for porous silica with C02 injection result in the

following major conclusions:

1. Radiative transfer within the heat shield material increases the

temperature of the material. Therefore, the absorption of radiation by trans-

pirant gas does not play an effective role as a heat shield, but, the injec-

tion of the gas into the adjacent boundary layer reduces the incident heating

and the temperature level within the matrix becomes lower [effect of i^^ and

^ra3)

2. Increasing the mass injection rate of the transpirant gas reduces

temperature distributions, but increases the fluid pressure difference between *

front surface and back face. Cooling effectiveness per mass injection rate

decreases as mass injection rate increases. In this respect, the behavior is

similar to that of the general mass transfer cooling system.

3. Small porosity increases the volumetric heat transfer coefficient,

thus causing closer temperature distributions between solid and fluid and

resulting in higher back-face fluid pressure.

4. Increasing material thickness gives lower back-face heat conduction

but has practically no effect on solid surface temperature.

5. The thermal conductivity and specific heat of the solid matrix have

more important effects on the solutions than fluid thermal properties.

Agreement of the present solution with the more rigorous numerical

calculation (the Adams-Moulton integral scheme) is quite good.

The calculated results were presented in the terms of the correlational

form for mass injection rate, porosity, and radiation heat transfer correction

factor, as the criteria for a transpiration cooling system.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, California 94035, September 16, 1975
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APPENDIX A

RADIATIVE TRANSFER EQUATIONS

When the radiative emission inside the matrix is negligibly small
compared to the radiant fluxes transmitted inward and backscattered outward,

^ the one-dimensional radiation transfer can be described by the Kubelka-Munk
"two-flux" equations (ref. 14) as

dirp
-d^ C5 ^)T^ + SI^ (Al)

dip

-^ (5 + K)I^ SI^ CA2)

where K and 5’ are absorption coefficient and scattering coefficient,
respectively, and are defined by

K ^Kf + (1 ^Kg (A3)

S (f)^ + (1 ^Sg (A4)

The boundary conditions for this set of simultaneous equations (Al) and
(A2) are

at x 0 (front surface)

^ Cl n^)J^ + n^, (AS)

at x L (back face)

^ ^^ (A6)

as illustrated in figure 2.

The general solutions are

i

IT A(l ^e^ + 5(1 + ^e"01^ (A7)

J^ A(l + g)^ + B(l g)^ (A8)

13



where

a ^K{.K + 25)

g /K/CK + 25)"

A Cl n^ ^ r

^ Cl n^^
-a CA9)

Ao [1 6 n^Cl + P) ]e

Ai [Ci e)2 Ci e2) ^ + n^) + (i + e)^^]^""
9 aIi

[(i + e)2 Ci e^ Cnz + ^) + c1 B) ^^^
BQ Cl e^ Cl + n^2) 2(1 + P2)^

5i AoAi
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APPENDIX B

EXPRESSIONS FOR COEFFICIENTS IN SOLUTION

Characteristic Equation and Its Solution

By substituting the bracketed terms of equations (38) and (39) into the
homogeneous forms of equations (22) and (23) one obtains

c^2 + $i (c^ y^) 0 (.k 1, 2, fe") (Bl)

^k^k2 + ^^k^k + ^C^ Y^) 0 (fc 1, 2, ^’) (B2)

Yo 1 (B3)

Then, since CT, ^ 0,

y^ (6^2 + $i)/$i (^ 1, 2, 7;’) (B4)

6?;3 + $2(5^2 + ($i E>3)<S^ + $i$2 0 (?<: 1, 2, 7c’) (B5)

and A:’ 3. Therefore, 61, are the roots of the characteristic equation

63 + $^g2 + ^ ,^ ,5 + ^^ 0 (B6)

Coefficients of Solutions for Case I-A and Case II-A

By substituting equations (38) and (39) into equations (22) and (23) one
obtains

’1 (o^e + o:4$4)/ (a:2a3 + 0:10:4)

’2 (fc’2^7 + ^’^/ (^^S + ^’1^4)
(B7)

5’3 (a^^ a^^} {a^ay, + 0:10:4)

5’4 (Z^^ &i$7)/(&2&3 + ^’1^4)

where

15



a\ a2!,2 + $1

0:2 $1

0:3 $3

0:4 Ot2^2 + ^^aL ^3
(B8)

>! a2!.2 + $1

62 (R)1

63 $3

bn. a2^2 $201-^ ^3

By applying the boundary conditions, equations (30) (33) (36) and (37),
to equations (38) and (39)

FI A2 A3 /

Q^ F^ 52 ^3 /DET CB9)

^3 C-2 C-3 /
AI FI A3 /

C2 Bi Fz 53 /3"Z7 (BID)

^1 ^3 ^3 /
Al A2 FI /

03 BI ^2 ^2 /?5’2’ CBll)

Cl (72 ^3 /

CQ 1 ^1 ^2 C\ CZ 3 CB12)

where

AI A2 A3
DET BI 02 ^3 CB13)

Cl C-2 ^3

16



&1
A^ 1 e k (k 1, 2, 3) (B14)

5,,

5^ 1 y^ e K (k 1, 2, 3) (B15)

^ ^fe2 {k 1’ 2’ 3^ ^B16)

For case II-A:

^1 1 5’l Cl e"27) ’2 C1 e"017’) CB17)

^2 1 5’l 5’2 + 5’3 e^ + 5’4 e""1’ CB18)

^3 =-a2L2(^’3 + ’4) CB19)

For case I-A:

5’i ’2 ’3 ’4 0 (B20)

Coefficients of Solutions for Case I-B and Case II-B

The boundary condition (33) of case I-A and case II-A is replaced by
equation (34) therefore equations (B16) and (B19) should be replaced by

C^ y^ (k 1, 2, 3) (B21)

^3 ci(-’3 + 4) (B22)

respectively.
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APPENDIX C

THERMAL AND OPTICAL PROPERTIES OF POROUS MATRIX

AND TRANSPIRANT GAS

Thermal and optical properties of porous silica and carbon dioxide used

as the matrix and transpirant gas are given in tables 1 and 2.

TABLE 1 PROPERTIES OF POROUS SILICA

Value at

Property ^g^ 30^
Dimension Reference

(case <>’) (case <b

k 5.470x10-3 2. 157x10’3 cal/sec/cm/K 3
s

i" 0. 309 0. 172 cal/gm/K 3
Ps

p 1 .49 1.49 gm/cm0 3
Q

Ka 0.001 0.001 cm"1 3

S 40 40 cm"1 3
S

n,, 0.06511 0.06511 3

n^ 0. 17 0. 17 3

n^, 0.8 0.8 3

e 0. 14 0. 14 15

TABLE 2 PROPERTIES OF CARBON DIOXIDE

Value at

Property ---------1--------- Dimension Reference
1981 K 300 K

(case <& (case <b

kf 3.482xl0~4 2. 387X10"5 cal/sec/cm/K 12

r 0. 327 0.202 cal/gm/K 16
P -p

Kf 0. 1172 0. 1172 cm-! 17

Sf 0 0 cm-1 17

Vf 5.989xl0-4 l^OOxlO"4 gm/cm/sec 12

18



Viscous Coefficient and Inertial Coefficient

Since the data for viscous coefficient a and inertial coefficient f3 are
not available for porous silica, the experimental correlations for porous
feltmetal (ref. 9)

a 0. 7336xl09 (100 (j))"1 5378 (cm-2)

0 0. 1517xl04 (100 (j)) -2520 (cm-1)

which are obtained from the extrapolated data, are used.
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m 0. 1 gni/cn^/sec, L 1. 0 cm, ^ 1. 0, case II-A.
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